

Project Background

Client: City of Oceanside

Location: Mission Basin Groundwater Purification Facility (MBGPF) 215 Fireside Dr Oceanside, CA

Design – Build project to increase potable water distribution to 4.5 million gallons per day from MBGPF to 511 zone.

Scope of Work:

- Environmental & Permitting Analysis
- Hydraulic Analysis
- Geotechnical Analysis
- Design/Construction Cost Estimate
- Design/Construction Schedule
- Pump Station Building Design
- Drawing Plan Set

Pump Station Building

The **Pump Station Building** will house the 3 new vertical turbine pumps, 7 existing pumps, and an electrical room. The **design approach** focus on making maintenance access & safety. Five removable skylights on the roof provide access to the pumps for removal when needed (Figure3&4).

City of Oceanside 511 Pump Station Prepared by: Nero Consultants Ner A

Hydraulic Analysis

Cost Estimate

Table 3. Cost Estimate	
Type of Work	Total Cost
Total Material Costs	\$2,331,346
Construction/Equipment Costs (20%)	\$466 269
	\$100,200
Labor Costs (35%)	\$815,917
California State Sales Tax (7.5%)	\$271,019
Design Engineering & Bidding Phase (10%)	\$388,460
Permitting (1%)	\$38,846
Construction Engineering & Admin. (15%)	\$582,690
Profit (5%)	\$244,730
Contingency (3%)	\$146,838
Total Cost	\$5,286,171

The total cost for design and construction services is estimated to be **\$5.3 million** (Table 3).

An estimated **31% of total cost**, \$1.67 million, is from purchase of mechanical materials, including the three vertical turbine pumps and the 18" ductile iron pipe.

Multiple operating scenarios were tested on various pump models at maximum and minimum flow conditions in **PIPE-FLO Professional software**.

A flow diagram (Figure 1) was developed with calculated and assumed parameters along the flow path and direction of travel.

Table 2. Summary of Environmental Factors Potentially Affected				
Aesthetics	Agricultural	Air Quality		
Biological Resources	Cultural Resources	Geological		
Hazards	Water	Land Use & Planning		
Public Services	Noise	Population & Housing		
Utility Systems	Recreation	Transportation		

Sc	h	e	U	le

Table 2 Schedule Milestones							
Notice to Proceed		2/3/20	_				
Design Dhees		2/3/20	7/1/00				
Design Phase	146 days	2/7/20	//1/20				
Construction Phase	205 days	7/1/20	1/21/21				
Procurement	247 days	2/12/20	10/15/20				
Total Project Duration	357 days	1/31/20	1/21/21				

Schedule is designed to fast track the project by getting the **long** procurement items approved first (Table 2). This allowed for these items to be ordered as the rest of the design progressed, resulting in construction work starting as soon as the site civil work design package gets approved.

Previously collected boring logs by Robert Prater suggest loose sands with a water table detected close to the surface. The data indicates layers of loose alluvial soil 9-15 ft below the surface.

There may also be a possibility of soil liquefaction in the event of an earthquake.

Recommendations during construction: Dewatering Vertical shoring **Removal and compaction of soil** In-situ Sampling